Get $1 credit for every $25 spent!

15-Day Satisfaction Guarantee

We want you to be happy with every course you purchase! If you're unsatisfied for any reason, we will issue a refund within 15 days of purchase.

Get $1 credit for every $25 spent!
$99 $120.00 17% off wishlist
ADD TO CART
Add to Cart ($99)

Instructor
Lessons
32

Ending In:
access
lifetime
content
4 Hours
A recurrent neural network is a class of artificial neural network where connections form a directed cycle, using their internal memory to process arbitrary sequences of inputs. This makes them capable of tasks like handwriting and speech recognition. In this course, you'll explore this extremely expressive facet of deep learning and get up to speed on this revolutionary new advance.

  • Access 32 lectures & 4 hours of content 24/7
  • Get introduced to the Simple Recurrent Unit, also known as the Elman unit
  • Extend the XOR problem as a parity problem
  • Explore language modeling
  • Learn Word2Vec to create word vectors or word embeddings
  • Look at the long short-term memory unit (LSTM), & gated recurrent unit (GRU)
  • Apply what you learn to practical problems like learning a language model from Wikipedia data
The Lazy Programmer is a data scientist, big data engineer, and full stack software engineer. For his master's thesis he worked on brain-computer interfaces using machine learning. These assist non-verbal and non-mobile persons to communicate with their family and caregivers.

He has worked in online advertising and digital media as both a data scientist and big data engineer, and built various high-throughput web services around said data. He has created new big data pipelines using Hadoop/Pig/MapReduce, and created machine learning models to predict click-through rate, news feed recommender systems using linear regression, Bayesian Bandits, and collaborative filtering and validated the results using A/B testing.

He has taught undergraduate and graduate students in data science, statistics, machine learning, algorithms, calculus, computer graphics, and physics for students attending universities such as Columbia University, NYU, Humber College, and The New School.

Multiple businesses have benefitted from his web programming expertise. He does all the backend (server), frontend (HTML/JS/CSS), and operations/deployment work. Some of the technologies he has used are: Python, Ruby/Rails, PHP, Bootstrap, jQuery (Javascript), Backbone, and Angular. For storage/databases he has used MySQL, Postgres, Redis, MongoDB, and more.

Details & Requirements

  • Length of time users can access this course: lifetime
  • Access options: web streaming, mobile streaming
  • Certification of completion not included
  • Redemption deadline: redeem your code within 30 days of purchase
  • Experience level required: all levels, but you must have some knowledge of calculus, linear algebra, probability, Python, Numpy, and be able to write a feedforward neural network in Theano and TensorFlow.
  • All code for this course is available for download here, in the directory rnn_class

Compatibility

  • Internet required

Terms

  • Instant digital redemption
access
lifetime
content
4 Hours